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Abstract

When the effects of both the shear deformation and rotary inertia are considered, the literature regarding
the free vibration analysis of circular arches using the finite arch elements is rare. To the authors’
knowledge, Int. J. Numer. Methods Eng. 52 (2001) 273–286 is the latest work of the literature that deals
with this in detail. Since the procedures for deriving the stiffness and mass matrices of the arch element are
tedious and complicated in available literature, this paper tries to present a simple approach to overcome
these drawbacks. First, the three functions for the radial (or normal), tangential and rotational
displacements of an arch element are assumed. Since each function consists of six integration constants, one
has 18 unknown constants for the three displacement functions. Next, from the last three displacement
functions, the three force–displacement differential equations and the three static equilibrium equations for
the arch element, one obtains three polynomial expressions. Equating to zero the coefficients of the terms in
each of the last three expressions, respectively, one obtains 18 equations as functions of the 18 unknown
constants. Excluding the 6 dependent ones among the last 18 equations, one obtains 12 independent
equations. Solving for the last 12 independent equations yielded a unique solution in terms of six unknown
constants. Finally, imposing the boundary conditions at the two ends of an arch element determines the last
six unknown constants and completely defines the three displacement functions. By means of the
displacement functions, one may calculate the stiffness and mass matrices of each arch element and then
perform the free vibration analysis of the arches. Good agreement between the results of this paper and
those of the existing literature validated the presented approach.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

While the application of finite elements to flat structures such as beams and plates is well
established, the solution for the curved structures, such as arches, rings and shells, is not yet
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completely understood [1]. Thus, many researchers devoted themselves to this field. Since the in-
plane and out-of-plane behaviors of the curved beams are usually tackled separately, only the
information regarding (in-plane) vibrations of arches is reviewed here. Most of the existing reports
aim at derivations of displacement functions (or shape functions) and stiffness matrices of the
arch (curved beam) elements [2–8]. Although these reports are very useful for the static analysis of
the arches, the mass matrix of the arch element is also required for the dynamic analysis of arches.
However, information on this aspect is rare and Refs. [1,9–13] are the few papers most concerned.

Neglecting the effect of rotary inertia (RI) and using the two functions for the radial and
tangential displacements, the stiffness matrix and consistent mass matrix of the arch element were
derived in ‘‘explicit’’ forms by Sabir and Ashwell [1] and Petyt and Fleischer [9]. In Ref. [10], by
considering the effects of RI and warping torsion and neglecting the effect of shear deformation
(SD), both the stiffness and mass matrices of the thin-walled (spatial) curved beam element were
derived from the energy variation theory. In Ref. [11], the explicit shape functions of Ref. [8] were
used to derive the stiffness matrix and consistent mass matrix of the arch element by using the
energy variation theory and the unit-displacement method, respectively. In Ref. [14], by
considering the effect of RI and neglecting that of SD, the stiffness matrix and consistent mass
matrix of the arch element were derived in ‘‘implicit’’ forms based on the three functions given by
Ref. [3] for the radial displacement, tangential displacement and the rotational angle. The element
stiffness matrix was obtained from the force–displacement relations given by Ref. [3] and the
element mass matrix was directly derived from the equation of kinetic energy for the arch element.
Comparing with the 18 explicit shape functions reported in Ref. [8] and the 100 unknown
constants for the shape functions of Ref. [13], shape functions given by Ref. [14] are in implicit
matrix form and have advantages of easy derivation, easy computer programming and mistakes
easy to get rid of.

Although the formulation of Ref. [14] is much simpler than that of Ref. [8], the effect of SD was
neglected by the former and was considered by the latter. Besides, the displacement functions for
the arch element in Ref. [14] were obtained from Ref. [3], where the procedures for deriving the
displacement functions were complicated. To improve all the above-mentioned defects of Refs.
[14,3], this paper presents a simple, straightforward and systematic technique to derive the
displacement functions for the radial (or normal), tangential and rotational displacements of an
arch element by taking account of the effects of both the SD and RI. First, the three functions for
the radial (or normal), tangential and rotational displacements of an arch element are assumed.
Next, the last three displacement functions were substituted into the three force–displacement
relations to determine the three element forces. Finally, the last three element forces were further
substituted into the three static equilibrium equations for the infinitesimal arch element to yield
three polynomial expressions. By respectively equating to zero the constant term and the
coefficients of the terms y; sin y; cos y; ysin y and ycos y; in each of the last three expressions, where
y is the angular co-ordinate for the arch element, one obtains the 18 equations as functions of the
18 unknown integration constants. Solving the last 18 equations and incorporating the six nodal
displacements at the two ends of the arch element, one may determine all the integration constants
and completely define the three displacement functions. Since the force–displacement relation-
ships for the Timoshenko arch element (with SD considered) are different from those for the Euler
arch element (with SD neglected), the procedures for deriving the displacement functions of the
Timoshenko arch element must be repeated for deriving those of the Euler arch element and then
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the results are combined to give the three displacement functions available for both the
Timoshenko arch element and the Euler arch element. This was also true for deriving the stiffness
matrix available for the Timoshenko and Euler arch elements.

Once the displacement functions for an arch element were defined, the approach of Ref. [14] is
used to perform the free vibration analysis of various circular arches. In addition to the
complicated consistent-mass model, the simple lumped-mass model was also tried and good
agreement between the results obtained from the two models was achieved. For convenience, an
arch neglecting the effects of both the SD and the RI was called the ‘‘Euler arch’’, an arch
considering only the effect of RI was called the ‘‘rotary arch’’ and an arch considering effects of
both SD and RI was called the ‘‘Timoshenko arch’’. The influence of thickness ratio (a=R) and
supporting conditions on the natural frequencies and mode shapes of the Euler arch, the rotary
arch and the Timoshenko arch were studied, where a is the radial thickness and R is the average
radius of the circular arch.

2. Displacement functions

For the arch element shown in Fig. 1, if the x-axis is the symmetric axis for the cross-section of
the arch, then the functions for the radial displacement ux; the circumferential displacement uy

and the rotational angle cy are to take the forms [3,8]

ux ¼ A1 þ A2yþ A3 sin yþ A4 cos yþ A5y sin yþ A6y cos y; ð1aÞ

uy ¼ B1 þ B2yþ B3 sin yþ B4 cos yþ B5y sin yþ B6y cos y; ð1bÞ

cy ¼
1

R
ðC1 þ C2yþ C3 sin yþ C4 cos yþ C5y sin yþ C6y cos yÞ; ð1cÞ
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Fig. 1. Definitions of the element displacements (ux; uy; cy) and the corresponding element forces (Fx; Fy; My) for an in-

plane curved beam (arch) element and the associated reference local and global co-ordinate systems, xyz and %x %y %z:
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where A1–A6; B1–B6 and C1–C6 are the integration constants determined by the boundary
conditions of the arch element.

If the effect of SD is considered, then the relationships between the element forces (Fx; Fy; My)
and the element displacements (ux; uy; cy) are given by [8,15]

Fx ¼
k0AG

R
ðu0

x þ uy � RcyÞ; ð2aÞ

Fy ¼
EA

R
ðu0

y � uxÞ; ð2bÞ

My ¼
EIy

R2
Rc0

y; ð2cÞ

where Fx; Fy and My are the shear force, tangential force and bending moment in the positive x, z
and y directions, respectively, with xyz being the local reference co-ordinate system as shown in
Fig. 1, G is the shear modulus, k0 is the shear coefficient, A is the cross-sectional area, R is the
average radius of curvature of the arch element and Iy is the moment of inertia of the area A about
the y-axis given by [3]

Iy ¼
Z

A

x2

1 � ðx=RÞ
dA: ð3Þ

In Eqs. (2a)–(2c), the primes denote differentiation with respect to the angular co-ordinate y:
Static equilibrium of the infinitesimal curved beam element shown in Fig. 1 requires

that [3,15]

M 0
y þ RFx ¼ 0; ð4aÞ

F 0
x þ Fy ¼ 0; ð4bÞ

F 0
y � Fx ¼ 0: ð4cÞ

Substituting Eq. (1) into Eq. (2) and then introducing the resulting expressions into Eq. (4), one
obtains three equations. Equating to zero the constant term and the coefficients of the terms y;
sin y; cos y; ysin y and ycos y; respectively, in each of the last three equations, one obtains the
following 18 equations for the integration constants A1–A6; B1–B6 and C1–C6:

A2 � C1 ¼ �B1; ð5aÞ

C2 ¼ B2; ð5bÞ

A4 � A5 þ ð1þ rsÞC3 þ 2rsC6 ¼ B3; ð5cÞ

A3 þ A6 � ð1 þ rsÞC4 þ 2rsC5 ¼ �B4; ð5dÞ

A6 þ ð1þ rsÞC5 ¼ B5; ð5eÞ

A5 � ð1 þ rsÞC6 ¼ �B6; ð5fÞ
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reA1 þ C2 ¼ ð1þ reÞB2; ð6aÞ

A2 ¼ 0; ð6bÞ

ð1þ reÞA3 þ 2A6 � C4 þ C5 ¼ �ð1 þ reÞB4 þ ð1 þ reÞB5; ð6cÞ

ð1 þ reÞA4 � 2A5 þ C3 þ C6 ¼ ð1þ reÞB3 þ ð1þ reÞB6; ð6dÞ

ð1þ reÞA5 � C6 ¼ �ð1 þ reÞB6; ð6eÞ

ð1 þ reÞA6 þ C5 ¼ ð1þ reÞB5; ð6fÞ

ð1þ reÞA2 � C1 ¼ �B1; ð7aÞ

C2 ¼ B2; ð7bÞ

ð1þ reÞA4 � ð1 þ reÞA5 þ C3 ¼ ð1 þ reÞB3 þ 2reB6; ð7cÞ

ð1þ reÞA3 þ ð1þ reÞA6 � C4 ¼ �ð1þ reÞB4 þ 2reB5; ð7dÞ

ð1 þ reÞA6 þ C5 ¼ ð1þ reÞB5; ð7eÞ

ð1þ reÞA5 � C6 ¼ �ð1 þ reÞB6; ð7fÞ

where

rs ¼ EIy=ðk0GA � R2Þ; ð8Þ

re ¼ EA=ðk0GAÞ: ð9Þ

In the last two equations, the subscripts of the symbols rs and re denotes the ‘‘shear’’
deformation ratio and ‘‘extension’’ ratio, respectively.

It is noted that, in order to represent the values of Ai and Ci (i ¼ 1–6) in terms of Bi (i ¼ 1; 2y),
the foregoing 18 equations were rewritten from the forms f1ðAi;Bi;CiÞ ¼ 0 to the ones f2ðAi;CiÞ ¼
f3ðBiÞ; where fjðX Þ denotes a function of X :

From Eqs. (5a), (5b), (6a) and (6b), one obtains

A1 ¼ B2; A2 ¼ 0; C1 ¼ B1; C2 ¼ B2 ð10Þ

and from Eqs. (5e), (5f), (6e) and (6f) one has

A5 ¼ �B6; A6 ¼ B5; C5 ¼ C6 ¼ 0: ð11Þ
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When the relations given by Eqs. (10) and (11) are introduced into Eqs. (5)–(7), one obtains the
following 12 independent equations for the 12 unknowns Ai and Ci (i ¼ 1–6):

C1 ¼ B1;

C2 ¼ B2;

A4 þ ð1 þ rsÞC3 ¼ B3 � B6;

A3 � ð1 þ rsÞC4 ¼ �B4 � B5;

A5 ¼ �B6;

A6 ¼ B5;

8>>>>>>>>><
>>>>>>>>>:

A1 ¼ B2;

A2 ¼ 0;

ð1 þ reÞA3 þ 2A6 � C4 ¼ �ð1þ reÞB4 þ ð1þ reÞB5;

ð1 þ reÞA4 � 2A5 þ C3 ¼ ð1þ reÞB3 þ ð1 þ reÞB6;

8>>><
>>>:
ð1 þ reÞA4 þ C3 ¼ ð1þ reÞB3 � ð1� reÞB6;

ð1 þ reÞA3 � C4 ¼ �ð1 þ reÞB4 � ð1 � reÞB5:

(
ð12Þ

The solutions for the last 12 equations are

A1 ¼ B2;

A2 ¼ 0;

A3 ¼ �B4 � S2B5;

A4 ¼ B3 � S2B6;

A5 ¼ �B6;

A6 ¼ B5;

8>>>>>>>>><
>>>>>>>>>:

ð13aÞ

C1 ¼ B1;

C2 ¼ B2;

C3 ¼ �S1B6;

C4 ¼ S1B5;

C5 ¼ 0;

C6 ¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð13bÞ

where

S1 ¼ 2re=ðReRs � 1Þ; ð14Þ

S2 ¼ 1 � ð1þ rsÞS1; ð15Þ

Re ¼ 1þ re; ð16Þ

Rs ¼ 1þ rs: ð17Þ
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For convenience of computer calculations, one sets

B1 ¼ G5; Bi ¼ Gi�1 ði ¼ 2�5Þ; B6 ¼ G6: ð18Þ

Substituting Eq. (18) into Eq. (13) and then introducing the resulting values of Ai; Bi and Ci

ði ¼ 1�6Þ into Eqs. (1a)–(1c) one obtains

ux ¼G1 þ G2 cos y� G3 sin yþ G4ðy cos y� S2 sin yÞ

þ G6ð�y sin y� S2 cos yÞ; ð19aÞ

uy ¼ G1yþ G2 sin yþ G3 cos yþ G4y sin yþ G5 þ G6y cos y; ð19bÞ

cy ¼
1

R
½G1yþ G4ðS1 cos yÞ þ G5 þ G6ð�S1 sin yÞ	: ð19cÞ

If the effect of SD is neglected, then Eq. (2) reduces to [3,14]

Fx ¼ F 0
y; ð20aÞ

Fy ¼
EA

R
ðu0

y � uxÞ �
My

R
; ð20bÞ

My ¼
EIy

R2
ðu00

x þ uxÞ ð20cÞ

but the static equilibrium equations given by Eq. (4) remain unchanged [3].
From Eqs. (4b) and (4c) one obtains

F 00
y þ Fy ¼ 0 ð21Þ

and neglecting the SD yields the following relationship:

Rcy � ðu0
x þ uyÞ ¼ 0: ð22Þ

Following the same previous procedures for the case of considering the SD, i.e., substituting
Eq. (1) into Eq. (20) and then introducing the resulting expressions into Eqs. (4a) and (21),
together with the result of substituting Eq. (1) into Eq. (22), one obtains three equations. Equating
to zero the constant term and the coefficients of the terms y; sin y; cos y; y sin y and y cos y;
respectively, in each of the last three equations, one obtains 18 equations. Finally, solving the last
18 equations for Ai and Ci in terms of Bi ði ¼ 1�6Þ; one has

A1 ¼ C�B2;

A2 ¼ 0;

A3 ¼ �B4 þ B5;

A4 ¼ B3 þ B6;

A5 ¼ �B6;

A6 ¼ B5;

8>>>>>>>>><
>>>>>>>>>:

ð23aÞ
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C1 ¼ B1;

C2 ¼ B2;

C3 ¼ �2B6;

C4 ¼ 2B5;

C5 ¼ 0;

C6 ¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð23bÞ

where

C� ¼ 1=ð1 þ r�e Þ; ð24Þ

r�e ¼ EIy=ðR2EAÞ; ð25Þ

Similar to Eq. (18), if one sets

B1 ¼ G5; Bi ¼ Gi�1 ði ¼ 2�5Þ; B6 ¼ G6; ð26Þ

substituting Eq. (26) into Eq. (23) and inserting the resulting values of Ai; Bi and Ci ði ¼ 1�6Þ into
Eqs. 1(a)–(c) one arrives at

ux ¼G1C� þ G2 cos y� G3 sin yþ G4ðy cos yþ sin yÞ

þ G6ð�y sin yþ cos yÞ; ð27aÞ

uy ¼ G1yþ G2 sin yþ G3 cos yþ G4y sin yþ G5 þ G6y cos y; ð27bÞ

cy ¼
1

R
½G1yþ G4ð2cos yÞ þ G5 þ G6ð�2sin yÞ	: ð27cÞ

For the case of neglecting SD, one has

rs ¼ EIy=k0GAR2 ¼ 0 ð28Þ

and from Eqs. (14)–(17), (24) and (25), one obtains

S1 ¼ 2; S2 ¼ �1; C� ¼ 1=ð1 þ r�e Þ: ð29Þ

In such situation, the displacement functions defined by Eq. 19(a)–(c) for the Timoshenko arch
element (with SD considered) are exactly identical to the corresponding ones defined by
Eqs. (27a)–(27c) for the Euler arch element (with SD neglected). Therefore, introducing the
parameter C� appearing in Eq. (27a) to Eq. (19a) will give the following displacement functions
available for both the Timoshenko arch element and the Euler arch element:

ux ¼G1C� þ G2 cos y� G3 sin yþ G4ðy cos y� S2 sin yÞ

þ G6ð�y sin y� S2 cos yÞ; ð30aÞ

uy ¼ G1yþ G2 sin yþ G3 cos yþ G4y sin yþ G5 þ G6y cos y; ð30bÞ

cy ¼
1

R
½G1yþ G4ðS1 cos yÞ þ G5 þ G6ð�S1 sin yÞ	: ð30cÞ

It is noted that the last equations are exactly identical to Eqs. (19a)–(19c) except that the
constant term G1 in Eq. (19a) is replaced by G1C� in Eq. (30a), where the parameter C� was
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defined by Eq. (24). It is also noted that there exists an important relationship among re; rs and r�e
as one may see from Eqs. (8), (9) and (25): rer

�
e ¼ rs:

3. Element stiffness matrix

To write Eq. (30) in matrix form gives

fug ¼ ½H	fGg; ð31Þ

where

fug ¼ f ux uy cy g; ð32aÞ

½H	 ¼

C� cos y �sin y y cos y� S2 sin y 0 �y sin y� S2 cos y

y sin y cos y y sin y 1 y cos y

y=R 0 0 S1 cos y=R 1=R �S1 sin y=R

2
64

3
75; ð32bÞ

fGg ¼ f G1 G2 G3 G4 G5 G6 g: ð32cÞ

Applying to Eq. (31) the boundary conditions at the two ends of the arch element shown in
Fig. 1, one obtains

fdg ¼ ½B	fGg; ð33Þ

where

fdg ¼ f ux1 uy1 cy1 ux2 uy2 cy2 g; ð34aÞ

ð34bÞ

From Eq. (33) one obtains the integration constants G1�G6 to be given by

fGg ¼ ½B	�1fdg ð35Þ

Substituting Eq. (19) into Eq. (2), for the case of considering the effect of SD, and Eq. (27) into
Eq. (20), for the case of neglecting the effect of SD, using the following relationship for the
equilibrium of nodal forces:

fFx1 Fy1 My1 g ¼ �fFx2 Fy2 My2 g ð36Þ

and then combining the results, one obtains

fFg ¼ ½D	fGg; ð37Þ

where

fFg ¼ f Fx1 Fy1 My1 Fx2 Fy2 My2 g; ð38Þ
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ð39Þ

Substituting the values of {G} defined by Eq. (35) into Eq. (37), one obtains

fFg ¼ ½D	½B	�1fdg ¼ ½K 	fdg; ð40Þ

where [K] is the stiffness matrix for the arch element given by

½K	 ¼ ½D	½B	�1: ð41Þ

The stiffness matrix obtained from Eq. (41) with C� ¼ 1 is for the arch element by considering
the effect of SD, while with C� ¼ 1=ð1þ r�e Þ; r�e ¼ EIy=ðR2EAÞ and rs ¼ RIy=ðk0GAR2Þ ¼ 0 is for
the arch element by neglecting the effect of SD.

4. Element mass matrix

The kinetic energy of an arch element is given by [9]

T ¼
1

2

Z y2

y1

½rAð ’u2
x þ ’u2

yÞ þ rIy
’c2

y	R dy; ð42Þ

where the dots denote the derivatives with respect to time t, r is the mass density of the arch
material and Iy is the moment of inertia of the cross-sectional area defined by Eq. (3). The third
term on the right-hand side of Eq. (42), rIy

’c2
y; represents the RI, which is not considered in Refs.

[1,9]. Since, the effect of SD has been included in the displacement functions, ux; uy and cy; so
does in the kinetic energy given by Eq. (42).

For harmonic free vibrations, one has

fug ¼ f %ugeiot; ð43Þ

where f %ug is the amplitude of {u}, o is the natural frequency of the arch, t is time and i ¼
ffiffiffiffiffiffiffi
�1

p
:

The substitution of Eqs. (30) and (43) into Eq. (42) yields

T ¼ 1
2
o2fdgT½M	fdg; ð44Þ

where [M] is the consistent mass matrix for an arch element given by

½M	 ¼ rRð½B	�1ÞT
Z y2

y1

½H	T½L	½H	 dy
� �

½B	�1 ð45Þ

with

½L	 ¼

A 0 0

0 A 0

0 0 Iy

2
64

3
75: ð46Þ
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To determine the consistent mass matrix of an arch element [M], using Eq. (45), it is required to
calculate the following integration:

½ %H	 ¼
Z y2

y1

½H	T½L	½H	 dy ð47Þ

and all the other numerical calculations are performed by computer. The results for the
integration defined by Eq. (47) are shown in Appendix A at the end of this paper. Because ½ %H	 is a
6� 6 symmetrical square matrix, one requires only to calculate the 21 coefficients of the matrix.
This will be much simpler than the 108 constants for the 18 shape functions shown in Tables 1–3
of Ref. [8]. It is noted that the mass matrix for the arch element considering the effect of SD
should be obtained from Eq. (45) with C�=1, while that for the arch element neglecting the effect
of SD should be obtained from Eq. (45) with C� ¼ 1=ð1 þ r�e Þ; r�e ¼ EIy=ðR2EAÞ and rs ¼
RIy=ðk0GAR2Þ ¼ 0:

For the purpose of comparison, the free vibration analysis was also performed using the
following lumped mass matrix for the arch element:

ð48Þ

with

m1 ¼ m2 ¼ 1
2 rARa; ð49aÞ

J1 ¼ J2 ¼ 1
2
rIyRa: ð49bÞ

The symbol in Eq. (48) denotes a diagonal matrix and the notation a ð¼ y2 � y1Þ in Eq. (49)
denotes the subtended angle of the arch element (see Fig. 1).

5. Numerical results and discussions

This section validates the accuracy of the presented approach and studies the effec of SD and
that of RI. The influence of thickness ratio (a=R) on the natural frequencies and mode shapes of
the Euler arch, the rotary arch and the Timoshenko arch are also investigated, where the Euler
arch refers to an arch with the effects of both SD and RI neglected, the rotary arch refers to an
arch with only the effect of RI considered, while the Timoshenko arch refers to an arch with the
effects of both SD and RI considered. In the finite element method (FEM), the element stiffness
matrix and mass matrix for an Euler arch, a rotary arch or a Timoshenko arch take the same
forms, the only difference between them is the values for the coefficients of the element property
matrices. For the Euler arch element one must set the terms regarding SD and RI to be equal to
zero in the associated coefficients for the element property matrices, while for the rotary arch one
only requires setting the terms regarding SD to be equal to zero. It is also noted in the FEM that,
either for the Euler arch or the rotary arch, the ‘‘rotational’’ degree of freedom (d.o.f.), such as cy

in Fig. 1, must also be considered in addition to the ‘‘translational’’ d.o.f. This is different from
the classical analytical method, where the translational (lateral) displacement is the only
independent variable for an Euler arch.
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5.1. Validation of natural frequencies

The given data for the first example are (cf. Fig. 2): average radius R ¼ 3000; total subtended
angle %a ¼ 1:0 rad=57.3
, radial thickness a ¼ 0:0128900, axial thickness b ¼ 1:00800, cross-sectional
area A ¼ ab ¼ 0:013 in2, mass density of arch material r ¼ 0:1 lb=in3 and Young’s modulus
E ¼ 107 lb=in2: If the two ends of the arch are simply supported (i.e., ux1 ¼ uxn ¼ 0 with n being
the numbering of the final node), then the lowest five natural frequencies of the Euler arch are
shown in Table 1, where the exact solutions listed in Column 2 are determined by using the
frequency equation given in Appendix A of Ref. [9]. Columns 3–5 of Table 1 show the lowest five
natural frequencies of the simply supported arch obtained from the presented approach using 2, 4
and 6 arch elements, respectively. Comparing the last natural frequencies with the exact solutions
listed in Column 2 of Table 1, one sees that the presented approach with 6 arch elements (i.e.,
Ne ¼ 6) will achieve excellent accuracy for the lowest five natural frequencies.

If the given data for the arch were changed to the ones given by Ref. [11]: R ¼ 1 m;
%a ¼ 2p=3 rad, r ¼ 1 kg/m3, E ¼ 1N/m2, the dimensions of the cross-section being a ¼ b ¼ 0:25–
0.01m, and the Poisson ratio n ¼ 0:3; shear modulus G ¼ E=½2ð1þ nÞ	 ¼ 0:384 N=m2; shear
coefficient k0¼ 0:833; then the lowest three natural frequencies for the ‘‘clamped–clamped’’
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Fig. 2. Natural frequencies of a free–free complete ring may be determined by using a simply supported quarter ring.

Table 1

Lowest five natural frequencies of the simply supported curved beam, oi (i=1–5) (rad/s), with the effects of both SD

and RI neglected

Mode no. i Exact solutions [9] Total number of arch elements, Ne

2 4 6

1 0.349 0.349 0.349 0.349

2 1.571 1.572 1.572 1.572

3 3.612 3.725 3.615 3.613

4 6.470 8.212 6.474 6.474

5 10.144 14.307 10.274 10.162
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Timoshenko arch are shown in Table 2(a) and those for rotary arch are shown in Table 2(b)
corresponding to the five thickness ratios, a=R=0.250, 0.100, 0.050, 0.025, 0.010. Here ode

i

represents the ith natural frequency with all effects (including axial compressibility, RI and SD)
considered as given by Table IV of Ref. [11], and o0e

i denotes the ith natural frequency with SD

ARTICLE IN PRESS

Table 2

(a) Lowest three natural frequencies for the clamped–clamped Timoshenko arch and (b) lowest three natural-frequency

ratios, o0e
i =ode

i ; for the clamped–clamped rotary arch obtained from Ref. [11] and present paper

Thickness ratios, a=R Methods Natural frequencies (rad/s)a

ode
1 ode

2 ode
3

(a)

0.250 Ref. [11] 0.6878 0.8219 1.4877

Present 0.6898 0.8225 1.4910

0.100 Ref. [11] 0.3282 0.5876 0.9810

Present 0.3284 0.5878 0.9811

0.050 Ref. [11] 0.1692 0.3295 0.6022

Present 0.1692 0.3295 0.6022

0.025 Ref. [11] 0.08528 0.1690 0.3076

Present 0.08528 0.1690 0.3076

0.010 Ref. [11] 0.03419 0.06808 0.1238

Present 0.03419 0.06808 0.1238

(b)

Natural-frequency ratios, o0e
i =ode

i
b

o0e
1 =ode

1 o0e
2 =ode

2 o0e
3 =ode

3

0.250 Ref. [11] 1.1716 1.0291 1.1397

Present 1.1845 1.0360 1.1508

0.100 Ref. [11] 1.0329 1.0417 1.0130

Present 1.0357 1.0477 1.0257

0.050 Ref. [11] 1.0089 1.0143 1.0208

Present 1.0098 1.0189 1.0344

0.025 Ref. [11] 1.0021 1.0036 1.0055

Present 1.0029 1.0073 1.0162

0.010 Ref. [11] 1.0003 1.0006 1.0008

Present 1.0005 1.0020 1.0056

aode
i is the ith natural frequency with all effects (including axial compressibility, rotary inertia and shear deformation)

considered as given by Table 6 of Ref. [11].
bo0e

i is the ith natural frequency with shear deformation neglected as given by Table 6 of Ref. [11].
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neglected as given by Table VI of Ref. [11]. In other words, ode
i and o0e

i represent the ith natural
frequency of the Timoshenko arch and the rotary arch, respectively. From Tables 2(a) and 2(b) one
sees that the numerical results of the present paper are very close to those of Ref. [11] in the range
of thickness ratios, a=R=0.250 (for thick arch) to 0.010 (for thin arch). The total number of arch
elements for this example is Ne ¼ 32:

Finally, the lowest several natural-frequency parameters, bi ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAR4=ðEIyÞ

p
; i=1, 2,y, for

the complete circular ring and the circular arcs of Refs. [15,16] were studied. The given data are
[15,16]: Iy=AR2 ¼ 0:0025; E=k0G ¼ 3:0; Iy ¼ pr4=4 and r=R ¼ 0:1; where k0 is the shear coefficient,
G is the shear modulus and r is the radius for the circular cross-section of the arch. To achieve the
values of the last non-dimensional parameters, in this paper, the following material constants and
arch dimensions were used: k0¼ 0:8; n ¼ 0:2; E ¼ 30� 106 N=m2; r ¼ 7:329� 10�4 kg=m3;
r ¼ 1m and R ¼ 10m. In addition, the simply supported quarter ring shown in Fig. 2 was
used to determine the natural frequencies of the free–free complete ring. Table 3(a) shows the
values of bi (i=2, 3, 4) for the free–free complete ring, while Table 3(b) shows the fundamental
(lowest) frequency parameters (b1) for the hinged–hinged circular arcs with subtended angles

%a ¼80
, 180
, 240
, 360
 and those for the fixed–fixed circular arcs with subtended angles

%a ¼100
, 270
, 320
, 360
. It is evident that all the numerical results of the present paper are in
good agreement with those of Refs. [15,16]. The total number of arch elements for this example is
Ne ¼ 10: Since, for a free–free ring, the first mode (i.e., i ¼ 1) is a rigid-body mode with zero
natural frequency, it is not shown in Table 3(a). Besides, a hinged–hinged circular arc with total
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Table 3

(a) Lowest several natural-frequency parameters of the free–free ring, bi ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAR4=ðEIyÞ

p
; i ¼ 2–4 and (b) lowest

natural-frequency parameters of the circular arcs with hinged–hinged and fixed–fixed supporting conditions,

b1 ¼ o1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAR4=ðEIyÞ

p
(a)

Mode no. i Euler ring Rotary ring Timoshenko ring

Table 1 of [15] Present Table 1 of [15] Present Table 1 of [15] Present

2 2.680 2.682 2.671 2.676 2.631 2.624

3 7.600 — 7.530 — 7.292 —

4 14.550 14.539 14.310 14.306 13.570 13.539

(b)

Subtended angles %a (deg) Supporting conditions Euler arch

Table 2 of [15] Den Hartog [16] Present

80 Hinged–hinged 17.610 17.800 17.764

180 2.105 2.200 2.260

240 0.721 0.796 0.817

360 0.000 0.000 0.000

100 Fixed–fixed 17.850 17.900 17.543

270 1.245 1.395 1.390

320 0.813 0.821 0.819

360 0.547 0.567 0.565
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subtended angle %a ¼360
 is equivalent to a complete ring supported by a pin. Thus, its first mode
is also a rigid-body mode with zero natural frequency as shown in the 6th row of Table 3(b).

5.2. Influence of SD and RI on ‘‘Thin’’ arch

The arch studied in this subsection is a 180
 in-plane circular curved beam shown in Fig. 3 with
the following given data: a ¼ 0:06m, b ¼ 0:04m, R ¼ 0:5m, A ¼ ab ¼ 0:0024m2,
E ¼ 12� 1010N/m2, r ¼ 7:2� 103 kg/m3, n ¼ 0:2; k0¼ 0:833; G ¼ E=½2ð1þ nÞ	 ¼ 5 � 1010 N/m2

and the total number of arch elements was Ne ¼ 20: Table 4 shows the influence of SD and RI on
the lowest five natural frequencies of the arch with three supporting conditions: (a) clamped–
clamped (C–C), (b) clamped—hinged (C–H) and (c) hinged–hinged (H–H). From Table 4(a) one
sees that the lowest five natural frequencies of the Euler arch (see Columns 2 and 3) are very close
to those of the rotary arch (see Columns 4 and 5). Thus, the effect of RI on the current thin arch
with thickness ratio a=R ¼ 0:06=0:5 ¼ 0:12 is very small. The differences between the lowest five
natural frequencies of the Timoshenko arch (see Columns 6 and 7 of Table 4(a)) and those of the
rotary or Euler arch are larger, but they are still not significant (about 2.2% for the fundamental
frequencies), thus, the effect of SD on the current thin arch (with a=R ¼ 0:12) is also small.

In Table 4(a), the natural frequencies listed in Columns 2, 4 and 6 were obtained from the
consistent-mass model and those in Columns 3, 5 and 7 were obtained from the lumped-mass
model. It is evident that, for the Euler arch, rotary arch and the Timoshenko arches, the lowest
five natural frequencies obtained from the consistent-mass model are very close to the
corresponding ones obtained from the lumped-mass model. This is the reason why the lowest
five mode shapes of the C–C Timoshenko arch obtained from the consistent-mass model are also
very close to the corresponding ones obtained from the lumped-mass model as shown in Fig. 4,
where the long dashed line (———) represents the static (un-deformed) configuration of the C–C
Timoshenko arch, while the short dash lines (- - - - - - - - - - -) and the solid lines (———) denote the
mode shapes obtained from the lumped-mass model and the consistent-mass model, respectively.
It is noted that the ordinate of Fig. 4 and the ones of Figs. 5–7 denote the ith modal displacements
in the vertical ð%zÞ direction determined by (cf. Fig. 1)

f *u�%z gi ¼ �cos ½y	f *u�x gi þ sin ½y	f *u�y gi; ð50Þ
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where f *u�x gi and f *u�y gi are the modal displacements in the radial and circumferential directions,
respectively, and [y] is a diagonal matrix with its diagonal coefficients composed of the angular
co-ordinates for all nodal points of the entire arch.
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Table 4

Influence of SD and RI on the lowest five natural frequencies of a ‘‘thin’’ arch with three supporting conditions:

(a) clamped–clamped; (b) clamped–hinged; and (c) hinged–hinged

Mode no. i Euler arch Rotary arch Timoshenko arch

Consistent-mass

model

Lumped-mass

model

Consistent-mass

model

Lumped-mass

model

Consistent-mass

model

Lumped-mass

model

(a)

1 1236.435 1236.400 1234.953 1234.918 1209.620 1209.485

2 2672.403 2672.124 2663.102 2662.838 2574.673 2573.079

3 4988.269 4986.379 4950.186 4948.450 4721.978 4712.167

4 6756.161 6752.289 6716.738 6713.089 6492.510 6465.832

5 8884.755 8876.469 8799.000 8791.400 8551.011 8490.021

(b)

1 918.726 918.711 917.723 917.708 904.519 904.464

2 2306.551 2306.374 2298.939 2298.769 2240.723 2239.690

3 4443.122 4441.864 4410.243 4409.068 4248.178 4241.003

4 6560.629 6557.043 6509.646 6506.297 6268.102 6244.088

5 8395.823 8389.178 8335.402 8329.079 8225.623 8171.793

(c)

1 641.003 640.998 640.402 640.397 634.499 634.479

2 1947.919 1947.814 1941.907 1941.804 1907.409 1906.746

3 3933.185 3932.360 3905.235 3904.450 3796.761 3791.435

4 6223.602 6220.599 6163.089 6160.286 5942.490 5921.688

5 8150.610 8144.730 8115.855 8110.1143 8098.707 8047.228
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The lowest five natural frequencies of the 180
 arch with C–H and H–H supporting conditions
are shown in Tables 4(b) and (c), respectively. Comparing Tables 4(b) and (c) with Table 4(a), one
sees that all conclusions for the lowest five natural frequencies of Euler arch, rotary arch and
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Timoshenko arches obtained from Table 4(a) in the last paragraphs are also valid for those shown
in Tables 4(b) and (c). Since the lowest three natural frequencies of the Euler arch are very close to
those of the rotary arch and those of the Timoshenko arch, so are the corresponding mode shapes
as one may see from Fig. 5(a) for the C–C arch, from Fig. 5(b) for the C–H arch and from
Fig. 5(c) for the H–H arch. It is similar to Fig. 4 that the long dashed lines (———) represent the
static (un-deformed) configurations of the arches in Figs. 5(a–c), while the dotted lines (yyy),
the short dashed lines (- - - - - - - -) and the solid lines (———) denote the mode shapes for Euler
arches, rotary arches and Timoshenko arches, respectively. To avoid confusion, only the lowest
three mode shapes were shown in Fig. 5.

5.3. Influence of SD and RI on ‘‘Thick’’ arch

All the given data for the arch studied in this subsection are exactly the same as those studied in
the last subsection. The only difference is that the thickness ratio of the current arch is much
larger than that of the arch studied in the last subsection. In other words, for convenience, the
arch studied in the last subsection is called the thin arch (with a=R ¼ 0:06=0:5 ¼ 0:12) and that
studied in this subsection is called the thick arch. The dimensions for the cross-section of the
current arch are: a ¼ 0:25m, b ¼ 0:25m and A ¼ ab ¼ 0:0625m2. Thus, its thickness ratio is
a=R ¼ 0:25=0:5 ¼ 0:5:

It is similar to Table 4 that Table 5 shows the lowest five natural frequencies of Euler arch,
rotary arch and Timoshenko arch with three supporting conditions: (a) C–C, (b) C–H and
(c) H–H obtained from the consistent-mass model and the lumped-mass model. Although the
lowest five natural frequencies obtained from the consistent-mass model are also very close to
those obtained from the lumped-mass model, the lowest five natural five natural frequencies of the
Euler arch or the rotary arch are much greater than the corresponding ones of the Timoshenko
arch. This is the reason why the lowest five mode shapes obtained from the consistent-mass model
are also very close to those obtained from the lumped-mass model as shown in Fig. 6, but the
lowest three mode shapes of the Euler arch or the rotary arch are different from the corresponding
ones of the Timoshenko arch as one may see from Fig. 7(a) for the C–C arches, Fig. 7(b) for the
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C–H arches and Fig. 7(c) for the H–H arches. It is seen that the divergence between the
corresponding mode shapes increases with the increase of mode number i. It is similar to Fig. 5
that, to avoid confusion, only the lowest three mode shapes were shown in Fig. 7.
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6. Conclusions

1. A technique for deriving the displacement functions of an arch element has been presented in
this paper. Comparing with the existing approaches, the presented technique has the
advantages of being simple, straightforward and systematic. The formulation of this paper is
available for both the thin arches (with SD negligible) and the thick arches (with SD
significant).

2. If an arch with the effects of both SD and RI neglected is called the Euler arch, that with only
the effect of RI considered is called the rotary arch and that with the effects of both SD and RI
considered is called the Timoshenko arch, then no matter whether the arch is an Euler arch
(or thin arch), a rotary arch or a Timoshenko arch (or thick arch), its lowest five natural
frequencies and the associated mode shapes obtained from the simple lumped-mass model are
very close to the corresponding ones obtained from the complicated consistent-mass model.
Thus, it is one of the simple ways for checking the availability of a new approach by using the
simple lumped-mass model.

3. The effect of SD on the lowest five natural frequencies is negligible for the thin arch and
significant for the thick arch, this is also true for the associated mode shapes, particularly for
the higher modes.
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Table 5

Influence of SD and RI on the lowest five natural frequencies of a ‘‘thick’’ arch with three supporting conditions: (a)

clamped–clamped; (b) clamped–hinged; and (c) hinged–hinged

Mode no. i Euler arch Rotary arch Timoshenko arch

Consistent-mass

model

Lumped-mass

model

Consistent-mass

model

Lumped-mass

model

Consistent-mass

model

Lumped-mass

model

(a)

1 4835.399 4833.356 4762.023 4760.131 3745.324 3742.190

2 6505.408 6504.149 6444.462 6443.319 5795.380 5780.251

3 10756.212 10737.192 10403.312 10384.522 9764.621 9687.206

4 13196.301 13179.992 12462.042 12451.134 9769.648 9715.820

5 18215.823 18084.990 17477.952 17341.736 14113.887 13897.792

(b)

1 3690.404 3689.597 3631.343 3630.606 3010.172 3008.534

2 6495.035 6493.733 6429.795 6428.622 5728.944 5714.474

3 10570.244 10551.029 10232.081 10213.305 9122.353 9059.526

4 11412.132 11403.628 10790.988 10783.647 9769.431 9714.219

5 18111.764 17974.655 17430.608 17295.973 13551.757 13365.898

(c)

1 2658.848 2658.562 2618.689 2618.431 2293.020 2292.297

2 6460.329 6458.944 6379.862 6378.666 5597.677 5584.355

3 9690.012 9686.462 9201.280 9197.816 8589.243 8536.110

4 10640.727 10620.073 10325.827 10305.154 9692.360 9636.890

5 17429.417 17398.258 15571.109 15547.527 13010.867 12852.972
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4. Among the SD and the RI, the effect on the dynamic behavior of an arch of the SD is much
greater than that of the RI.
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Appendix A. Coefficients of matrix ½ %H	

Integration according to Eq. (47) will give the coefficients of the matrix ½ %H	; %Hij ði; j ¼ 1�6Þ:
Because of symmetry, only the coefficients in the left lower triangle are shown below:

%H11 ¼ AðC�Þ2yþ A þ
Iy

R2

� �
y3

3

� �� �y2

y1

;

%H21 ¼ A½ð1 þ C�Þsin y� y cos y	y2

y1
;

%H22 ¼ A½y	y2

y1
;

%H31 ¼ A½ð1 þ C�Þcos yþ y sin y	y2

y1
;

%H32 ¼ 0;

%H33 ¼ A½y	y2

y1
;

%H41 ¼ 2A þ AC�ð1 þ S2Þ þ
S1Iy

R2

� �
cos y

�
þ AC� þ 2A þ

S1Iy

R2

� �
y sin y� Ay2 cos y

�y2

y1

;

%H42 ¼
A

2
½y2 þ S2 cos2 y	y2

y1
;

%H43 ¼
AS2

2
½y� sin y cos y	y2

y1
;

%H44 ¼
Ay3

3
þ AS2ð1þ S2Þ þ

S2
1Iy

R2

� �
y
2

�

� AS2ð1þ S2Þ �
S2

1Iy

R2

� �
sin y cos y

2
� AS2y sin2 y

�y2

y1

;

%H51 ¼
1

2

� �
A þ

Iy

R2

� �
y2

� �y2

y1

;

%H52 ¼ A½�cos y	y2

y1
;
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%H53 ¼ A½sin y	y2

y1
;

%H54 ¼ A þ
S1Iy

R2

� �
sin y� Ay cos y

� �y2

y1

;

%H55 ¼ A þ
Iy

R2

� �
y

� �y2

y1

;

%H61 ¼ � AC�ð1þ S2Þ þ 2A þ
S1Iy

R2

� �
sin y

�
þAy2 sin yþ AC� þ 2A þ

S1Iy

R2

� �
y cos y

�y2

y1

;

%H62 ¼
�AS2

2
½yþ sin y cos y	y2

y1
;

%H63 ¼
A

2
½y2 þ S2 sin2 y	y2

y1
;

%H64 ¼
1

2
�AS2 y sin 2yþ

cos 2y
2

� �
þ AS2

2 �
S2

1Iy

R2

� �
sin2 y

� �y2

y1

;

%H65 ¼ A þ
S1Iy

R2

� �
cos yþ Ay sin y

� �y2

y1

;

%H66 ¼
Ay3

3
þ �AS2ð1 � S2Þ þ

S2
1Iy

R2

� �
y
2
þ AS2ð1 þ S2Þ
��

�
S2

1Iy

R2

�
sin y cos y

2
þ AS2y sin2 y

�y2

y1

;

where

f ðyÞ½ 	y2

y1
¼ f ðy2Þ � f ðy1Þ:
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